Flink API #
If possible, recommend using Flink SQL or Spark SQL, or simply use SQL APIs in programs.
Dependency #
Maven dependency:
<dependency>
<groupId>org.apache.paimon</groupId>
<artifactId>paimon-flink-1.20</artifactId>
<version>1.0.0</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-api-java-bridge</artifactId>
<version>1.20.0</version>
<scope>provided</scope>
</dependency>
Or download the jar file: Paimon Flink.
Please choose your Flink version.
Paimon relies on Hadoop environment, you should add hadoop classpath or bundled jar.
Not only DataStream API, you can also read or write to Paimon tables by the conversion between DataStream and Table in Flink. See DataStream API Integration.
Write to Table #
import org.apache.paimon.catalog.Catalog;
import org.apache.paimon.catalog.Identifier;
import org.apache.paimon.flink.FlinkCatalogFactory;
import org.apache.paimon.flink.sink.FlinkSinkBuilder;
import org.apache.paimon.options.Options;
import org.apache.paimon.table.Table;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.DataTypes;
import org.apache.flink.table.types.DataType;
import org.apache.flink.types.Row;
import org.apache.flink.types.RowKind;
public class WriteToTable {
public static void writeTo() throws Exception {
// create environments of both APIs
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// for CONTINUOUS_UNBOUNDED source, set checkpoint interval
// env.enableCheckpointing(60_000);
// create a changelog DataStream
DataStream<Row> input =
env.fromElements(
Row.ofKind(RowKind.INSERT, "Alice", 12),
Row.ofKind(RowKind.INSERT, "Bob", 5),
Row.ofKind(RowKind.UPDATE_BEFORE, "Alice", 12),
Row.ofKind(RowKind.UPDATE_AFTER, "Alice", 100))
.returns(
Types.ROW_NAMED(
new String[] {"name", "age"}, Types.STRING, Types.INT));
// get table from catalog
Options catalogOptions = new Options();
catalogOptions.set("warehouse", "/path/to/warehouse");
Catalog catalog = FlinkCatalogFactory.createPaimonCatalog(catalogOptions);
Table table = catalog.getTable(Identifier.create("my_db", "T"));
DataType inputType =
DataTypes.ROW(
DataTypes.FIELD("name", DataTypes.STRING()),
DataTypes.FIELD("age", DataTypes.INT()));
FlinkSinkBuilder builder = new FlinkSinkBuilder(table).forRow(input, inputType);
// set sink parallelism
// builder.parallelism(_your_parallelism)
// set overwrite mode
// builder.overwrite(...)
builder.build();
env.execute();
}
}
Read from Table #
import org.apache.paimon.catalog.Catalog;
import org.apache.paimon.catalog.Identifier;
import org.apache.paimon.flink.FlinkCatalogFactory;
import org.apache.paimon.flink.source.FlinkSourceBuilder;
import org.apache.paimon.options.Options;
import org.apache.paimon.table.Table;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.types.Row;
public class ReadFromTable {
public static void readFrom() throws Exception {
// create environments of both APIs
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// get table from catalog
Options catalogOptions = new Options();
catalogOptions.set("warehouse", "/path/to/warehouse");
Catalog catalog = FlinkCatalogFactory.createPaimonCatalog(catalogOptions);
Table table = catalog.getTable(Identifier.create("my_db", "T"));
// table = table.copy(Collections.singletonMap("scan.file-creation-time-millis", "..."));
FlinkSourceBuilder builder = new FlinkSourceBuilder(table).env(env);
// builder.sourceBounded(true);
// builder.projection(...);
// builder.predicate(...);
// builder.limit(...);
// builder.sourceParallelism(...);
DataStream<Row> dataStream = builder.buildForRow();
// use this datastream
dataStream.executeAndCollect().forEachRemaining(System.out::println);
// prints:
// +I[Bob, 12]
// +I[Alice, 12]
// -U[Alice, 12]
// +U[Alice, 14]
}
}
Cdc ingestion Table #
Paimon supports ingest data into Paimon tables with schema evolution.
- You can use Java API to write cdc records into Paimon Tables.
- You can write records to Paimon’s partial-update table with adding columns dynamically.
Here is an example to use RichCdcSinkBuilder
API:
import org.apache.paimon.catalog.Catalog;
import org.apache.paimon.catalog.CatalogContext;
import org.apache.paimon.catalog.CatalogFactory;
import org.apache.paimon.flink.FlinkCatalogFactory;
import org.apache.paimon.catalog.Identifier;
import org.apache.paimon.flink.sink.cdc.RichCdcRecord;
import org.apache.paimon.flink.sink.cdc.RichCdcSinkBuilder;
import org.apache.paimon.fs.Path;
import org.apache.paimon.options.Options;
import org.apache.paimon.schema.Schema;
import org.apache.paimon.table.Table;
import org.apache.paimon.types.DataTypes;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import static org.apache.paimon.types.RowKind.INSERT;
public class WriteCdcToTable {
public static void writeTo() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// for CONTINUOUS_UNBOUNDED source, set checkpoint interval
// env.enableCheckpointing(60_000);
DataStream<RichCdcRecord> dataStream =
env.fromElements(
RichCdcRecord.builder(INSERT)
.field("order_id", DataTypes.BIGINT(), "123")
.field("price", DataTypes.DOUBLE(), "62.2")
.build(),
// dt field will be added with schema evolution
RichCdcRecord.builder(INSERT)
.field("order_id", DataTypes.BIGINT(), "245")
.field("price", DataTypes.DOUBLE(), "82.1")
.field("dt", DataTypes.TIMESTAMP(), "2023-06-12 20:21:12")
.build());
Identifier identifier = Identifier.create("my_db", "T");
Options catalogOptions = new Options();
catalogOptions.set("warehouse", "/path/to/warehouse");
CatalogLoader catalogLoader =
() -> FlinkCatalogFactory.createPaimonCatalog(catalogOptions);
Table table = catalogLoader.load().getTable(identifier);
new RichCdcSinkBuilder(table)
.forRichCdcRecord(dataStream)
.identifier(identifier)
.catalogLoader(catalogLoader)
.build();
env.execute();
}
}