SQL Write #
Insert Table #
The INSERT
statement inserts new rows into a table or overwrites the existing data in the table. The inserted rows can be specified by value expressions or result from a query.
Syntax
INSERT { INTO | OVERWRITE } table_identifier [ part_spec ] [ column_list ] { value_expr | query };
Parameters
-
table_identifier: Specifies a table name, which may be optionally qualified with a database name.
-
part_spec: An optional parameter that specifies a comma-separated list of key and value pairs for partitions.
-
column_list: An optional parameter that specifies a comma-separated list of columns belonging to the table_identifier table. Spark will reorder the columns of the input query to match the table schema according to the specified column list.
Note: Since Spark 3.4, INSERT INTO commands with explicit column lists comprising fewer columns than the target table will automatically add the corresponding default values for the remaining columns (or NULL for any column lacking an explicitly-assigned default value). In Spark 3.3 or earlier, column_list’s size must be equal to the target table’s column size, otherwise these commands would have failed.
-
value_expr ( { value | NULL } [ , … ] ) [ , ( … ) ]: Specifies the values to be inserted. Either an explicitly specified value or a NULL can be inserted. A comma must be used to separate each value in the clause. More than one set of values can be specified to insert multiple rows.
For more information, please check the syntax document: Spark INSERT Statement
Insert Into #
Use INSERT INTO
to apply records and changes to tables.
INSERT INTO my_table SELECT ...
Insert Overwrite #
Use INSERT OVERWRITE
to overwrite the whole table.
INSERT OVERWRITE my_table SELECT ...
Insert Overwrite Partition #
Use INSERT OVERWRITE
to overwrite a partition.
INSERT OVERWRITE my_table PARTITION (key1 = value1, key2 = value2, ...) SELECT ...
Dynamic Overwrite Partition #
Spark’s default overwrite mode is static
partition overwrite. To enable dynamic overwritten you need to set the Spark session configuration spark.sql.sources.partitionOverwriteMode
to dynamic
For example:
CREATE TABLE my_table (id INT, pt STRING) PARTITIONED BY (pt);
INSERT INTO my_table VALUES (1, 'p1'), (2, 'p2');
-- Static overwrite (Overwrite the whole table)
INSERT OVERWRITE my_table VALUES (3, 'p1');
SELECT * FROM my_table;
/*
+---+---+
| id| pt|
+---+---+
| 3| p1|
+---+---+
*/
-- Dynamic overwrite (Only overwrite pt='p1')
SET spark.sql.sources.partitionOverwriteMode=dynamic;
INSERT OVERWRITE my_table VALUES (3, 'p1');
SELECT * FROM my_table;
/*
+---+---+
| id| pt|
+---+---+
| 2| p2|
| 3| p1|
+---+---+
*/
Truncate Table #
The TRUNCATE TABLE
statement removes all the rows from a table or partition(s).
TRUNCATE TABLE my_table;
Update Table #
Updates the column values for the rows that match a predicate. When no predicate is provided, update the column values for all rows.
Note:
Update primary key columns is not supported when the target table is a primary key table.
Spark supports update PrimitiveType and StructType, for example:
-- Syntax
UPDATE table_identifier SET column1 = value1, column2 = value2, ... WHERE condition;
CREATE TABLE t (
id INT,
s STRUCT<c1: INT, c2: STRING>,
name STRING)
TBLPROPERTIES (
'primary-key' = 'id',
'merge-engine' = 'deduplicate'
);
-- you can use
UPDATE t SET name = 'a_new' WHERE id = 1;
UPDATE t SET s.c2 = 'a_new' WHERE s.c1 = 1;
Delete From Table #
Deletes the rows that match a predicate. When no predicate is provided, deletes all rows.
DELETE FROM my_table WHERE currency = 'UNKNOWN';
Merge Into Table #
Merges a set of updates, insertions and deletions based on a source table into a target table.
Note:
In update clause, to update primary key columns is not supported when the target table is a primary key table.
Example: One
This is a simple demo that, if a row exists in the target table update it, else insert it.
-- Here both source and target tables have the same schema: (a INT, b INT, c STRING), and a is a primary key.
MERGE INTO target
USING source
ON target.a = source.a
WHEN MATCHED THEN
UPDATE SET *
WHEN NOT MATCHED
THEN INSERT *
Example: Two
This is a demo with multiple, conditional clauses.
-- Here both source and target tables have the same schema: (a INT, b INT, c STRING), and a is a primary key.
MERGE INTO target
USING source
ON target.a = source.a
WHEN MATCHED AND target.a = 5 THEN
UPDATE SET b = source.b + target.b -- when matched and meet the condition 1, then update b;
WHEN MATCHED AND source.c > 'c2' THEN
UPDATE SET * -- when matched and meet the condition 2, then update all the columns;
WHEN MATCHED THEN
DELETE -- when matched, delete this row in target table;
WHEN NOT MATCHED AND c > 'c9' THEN
INSERT (a, b, c) VALUES (a, b * 1.1, c) -- when not matched but meet the condition 3, then transform and insert this row;
WHEN NOT MATCHED THEN
INSERT * -- when not matched, insert this row without any transformation;
Streaming Write #
Paimon Structured Streaming only supports the twoappend
andcomplete
modes.
// Create a paimon table if not exists.
spark.sql(s"""
|CREATE TABLE T (k INT, v STRING)
|TBLPROPERTIES ('primary-key'='k', 'bucket'='3')
|""".stripMargin)
// Here we use MemoryStream to fake a streaming source.
val inputData = MemoryStream[(Int, String)]
val df = inputData.toDS().toDF("k", "v")
// Streaming Write to paimon table.
val stream = df
.writeStream
.outputMode("append")
.option("checkpointLocation", "/path/to/checkpoint")
.format("paimon")
.start("/path/to/paimon/sink/table")
Schema Evolution #
Schema evolution is a feature that allows users to easily modify the current schema of a table to adapt to existing data, or new data that changes over time, while maintaining data integrity and consistency.
Paimon supports automatic schema merging of source data and current table data while data is being written, and uses the merged schema as the latest schema of the table, and it only requires configuring write.merge-schema
.
data.write
.format("paimon")
.mode("append")
.option("write.merge-schema", "true")
.save(location)
When enable write.merge-schema
, Paimon can allow users to perform the following actions on table schema by default:
- Adding columns
- Up-casting the type of column(e.g. Int -> Long)
Paimon also supports explicit type conversions between certain types (e.g. String -> Date, Long -> Int), it requires an explicit configuration write.merge-schema.explicit-cast
.
Schema evolution can be used in streaming mode at the same time.
val inputData = MemoryStream[(Int, String)]
inputData
.toDS()
.toDF("col1", "col2")
.writeStream
.format("paimon")
.option("checkpointLocation", "/path/to/checkpoint")
.option("write.merge-schema", "true")
.option("write.merge-schema.explicit-cast", "true")
.start(location)
Here list the configurations.
Scan Mode | Description |
---|---|
write.merge-schema |
If true, merge the data schema and the table schema automatically before write data. |
write.merge-schema.explicit-cast |
If true, allow to merge data types if the two types meet the rules for explicit casting. |