Python API
This documentation is for an unreleased version of Apache Paimon. We recommend you use the latest stable version.

Python API #

PyPaimon is a Python implementation for connecting Paimon catalog, reading & writing tables. The complete Python implementation of the brand new PyPaimon does not require JDK installation.

Environment Settings #

SDK Installing #

SDK is published at pypaimon. You can install by

pip install pypaimon

Create Catalog #

Before coming into contact with the Table, you need to create a Catalog.

from pypaimon import CatalogFactory

# Note that keys and values are all string
catalog_options = {
    'warehouse': 'file:///path/to/warehouse'
}
catalog = CatalogFactory.create(catalog_options)

Currently, PyPaimon only support filesystem catalog and rest catalog. See Catalog.

Create Database & Table #

You can use the catalog to create table for writing data.

Create Database (optional) #

Table is located in a database. If you want to create table in a new database, you should create it.

catalog.create_database(
    name='database_name',
    ignore_if_exists=True,  # To raise error if the database exists, set False
    properties={'key': 'value'}  # optional database properties
)

Create Schema #

Table schema contains fields definition, partition keys, primary keys, table options and comment. The field definition is described by pyarrow.Schema. All arguments except fields definition are optional.

Generally, there are two ways to build pyarrow.Schema.

First, you can use pyarrow.schema method directly, for example:

import pyarrow as pa

from pypaimon import Schema

pa_schema = pa.schema([
    ('dt', pa.string()),
    ('hh', pa.string()),
    ('pk', pa.int64()),
    ('value', pa.string())
])

schema = Schema.from_pyarrow_schema(
    pa_schema=pa_schema,
    partition_keys=['dt', 'hh'],
    primary_keys=['dt', 'hh', 'pk'],
    options={'bucket': '2'},
    comment='my test table')

See Data Types for all supported pyarrow-to-paimon data types mapping.

Second, if you have some Pandas data, the pa_schema can be extracted from DataFrame:

import pandas as pd
import pyarrow as pa

from pypaimon import Schema

# Example DataFrame data
data = {
    'dt': ['2024-01-01', '2024-01-01', '2024-01-02'],
    'hh': ['12', '15', '20'],
    'pk': [1, 2, 3],
    'value': ['a', 'b', 'c'],
}
dataframe = pd.DataFrame(data)

# Get Paimon Schema
record_batch = pa.RecordBatch.from_pandas(dataframe)
schema = Schema.from_pyarrow_schema(
    pa_schema=record_batch.schema,
    partition_keys=['dt', 'hh'],
    primary_keys=['dt', 'hh', 'pk'],
    options={'bucket': '2'},
    comment='my test table'
)

Create Table #

After building table schema, you can create corresponding table:

schema = ...
catalog.create_table(
    identifier='database_name.table_name',
    schema=schema,
    ignore_if_exists=True  # To raise error if the table exists, set False
)

Get Table #

The Table interface provides tools to read and write table.

table = catalog.get_table('database_name.table_name')

Batch Write #

Paimon table write is Two-Phase Commit, you can write many times, but once committed, no more data can be written.

Currently, the feature of writing multiple times and committing once only supports append only table.
table = catalog.get_table('database_name.table_name')

# 1. Create table write and commit
write_builder = table.new_batch_write_builder()
table_write = write_builder.new_write()
table_commit = write_builder.new_commit()

# 2. Write data. Support 3 methods:
# 2.1 Write pandas.DataFrame
dataframe = ...
table_write.write_pandas(dataframe)

# 2.2 Write pyarrow.Table
pa_table = ...
table_write.write_arrow(pa_table)

# 2.3 Write pyarrow.RecordBatch
record_batch = ...
table_write.write_arrow_batch(record_batch)

# 3. Commit data
commit_messages = table_write.prepare_commit()
table_commit.commit(commit_messages)

# 4. Close resources
table_write.close()
table_commit.close()

By default, the data will be appended to table. If you want to overwrite table, you should use TableWrite#overwrite API:

# overwrite whole table
write_builder = table.new_batch_write_builder().overwrite()

# overwrite partition 'dt=2024-01-01'
write_builder = table.new_batch_write_builder().overwrite({'dt': '2024-01-01'})

Batch Read #

Get ReadBuilder and Perform pushdown #

A ReadBuilder is used to build reading utils and perform filter and projection pushdown.

table = catalog.get_table('database_name.table_name')
read_builder = table.new_read_builder()

You can use PredicateBuilder to build filters and pushdown them by ReadBuilder:

# Example filter: ('f0' < 3 OR 'f1' > 6) AND 'f3' = 'A'

predicate_builder = read_builder.new_predicate_builder()

predicate1 = predicate_builder.less_than('f0', 3)
predicate2 = predicate_builder.greater_than('f1', 6)
predicate3 = predicate_builder.or_predicates([predicate1, predicate2])

predicate4 = predicate_builder.equal('f3', 'A')
predicate_5 = predicate_builder.and_predicates([predicate3, predicate4])

read_builder = read_builder.with_filter(predicate_5)

See Predicate for all supported filters and building methods.

You can also pushdown projection by ReadBuilder:

# select f3 and f2 columns
read_builder = read_builder.with_projection(['f3', 'f2'])

Scan Plan #

Then you can step into Scan Plan stage to get splits:

table_scan = read_builder.new_scan()
splits = table_scan.plan().splits()

Read Splits #

Finally, you can read data from the splits to various data format.

Apache Arrow #

This requires pyarrow to be installed.

You can read all the data into a pyarrow.Table:

table_read = read_builder.new_read()
pa_table = table_read.to_arrow(splits)
print(pa_table)

# pyarrow.Table
# f0: int32
# f1: string
# ----
# f0: [[1,2,3],[4,5,6],...]
# f1: [["a","b","c"],["d","e","f"],...]

You can also read data into a pyarrow.RecordBatchReader and iterate record batches:

table_read = read_builder.new_read()
for batch in table_read.to_arrow_batch_reader(splits):
    print(batch)

# pyarrow.RecordBatch
# f0: int32
# f1: string
# ----
# f0: [1,2,3]
# f1: ["a","b","c"]

Python Iterator #

You can read the data row by row into a native Python iterator. This is convenient for custom row-based processing logic.

table_read = read_builder.new_read()
for row in table_read.to_iterator(splits):
    print(row)

# [1,2,3]
# ["a","b","c"]

Pandas #

This requires pandas to be installed.

You can read all the data into a pandas.DataFrame:

table_read = read_builder.new_read()
df = table_read.to_pandas(splits)
print(df)

#    f0 f1
# 0   1  a
# 1   2  b
# 2   3  c
# 3   4  d
# ...

DuckDB #

This requires duckdb to be installed.

You can convert the splits into an in-memory DuckDB table and query it:

table_read = read_builder.new_read()
duckdb_con = table_read.to_duckdb(splits, 'duckdb_table')

print(duckdb_con.query("SELECT * FROM duckdb_table").fetchdf())
#    f0 f1
# 0   1  a
# 1   2  b
# 2   3  c
# 3   4  d
# ...

print(duckdb_con.query("SELECT * FROM duckdb_table WHERE f0 = 1").fetchdf())
#    f0 f1
# 0   1  a

Ray #

This requires ray to be installed.

You can convert the splits into a Ray dataset and handle it by Ray API:

table_read = read_builder.new_read()
ray_dataset = table_read.to_ray(splits)

print(ray_dataset)
# MaterializedDataset(num_blocks=1, num_rows=9, schema={f0: int32, f1: string})

print(ray_dataset.take(3))
# [{'f0': 1, 'f1': 'a'}, {'f0': 2, 'f1': 'b'}, {'f0': 3, 'f1': 'c'}]

print(ray_dataset.to_pandas())
#    f0 f1
# 0   1  a
# 1   2  b
# 2   3  c
# 3   4  d
# ...

Data Types #

Python Native Type PyArrow Type Paimon Type
int pyarrow.int8() TINYINT
int pyarrow.int16() SMALLINT
int pyarrow.int32() INT
int pyarrow.int64() BIGINT
float pyarrow.float32() FLOAT
float pyarrow.float64() DOUBLE
bool pyarrow.bool_() BOOLEAN
str pyarrow.string() STRING, CHAR(n), VARCHAR(n)
bytes pyarrow.binary() BYTES, VARBINARY(n)
bytes pyarrow.binary(length) BINARY(length)
decimal.Decimal pyarrow.decimal128(precision, scale) DECIMAL(precision, scale)
datetime.datetime pyarrow.timestamp(unit, tz=None) TIMESTAMP(p)
datetime.date pyarrow.date32() DATE
datetime.time pyarrow.time32(unit) or pyarrow.time64(unit) TIME(p)

Predicate #

Predicate kind Predicate method
p1 and p2 PredicateBuilder.and_predicates([p1, p2])
p1 or p2 PredicateBuilder.or_predicates([p1, p2])
f = literal PredicateBuilder.equal(f, literal)
f != literal PredicateBuilder.not_equal(f, literal)
f < literal PredicateBuilder.less_than(f, literal)
f <= literal PredicateBuilder.less_or_equal(f, literal)
f > literal PredicateBuilder.greater_than(f, literal)
f >= literal PredicateBuilder.greater_or_equal(f, literal)
f is null PredicateBuilder.is_null(f)
f is not null PredicateBuilder.is_not_null(f)
f.startswith(literal) PredicateBuilder.startswith(f, literal)
f.endswith(literal) PredicateBuilder.endswith(f, literal)
f.contains(literal) PredicateBuilder.contains(f, literal)
f is in [l1, l2] PredicateBuilder.is_in(f, [l1, l2])
f is not in [l1, l2] PredicateBuilder.is_not_in(f, [l1, l2])
lower <= f <= upper PredicateBuilder.between(f, lower, upper)
Edit This Page
Copyright © 2025 The Apache Software Foundation. Apache Paimon, Paimon, and its feather logo are trademarks of The Apache Software Foundation.