SQL DDL
This documentation is for an unreleased version of Apache Paimon. We recommend you use the latest stable version.

SQL DDL #

Catalog #

Create Catalog #

Paimon catalogs currently support three types of metastores:

  • filesystem metastore (default), which stores both metadata and table files in filesystems.
  • hive metastore, which additionally stores metadata in Hive metastore. Users can directly access the tables from Hive.
  • jdbc metastore, which additionally stores metadata in relational databases such as MySQL, Postgres, etc.

See CatalogOptions for detailed options when creating a catalog.

Create Filesystem Catalog #

The following Spark SQL registers and uses a Paimon catalog named my_catalog. Metadata and table files are stored under hdfs:///path/to/warehouse.

The following shell command registers a paimon catalog named paimon. Metadata and table files are stored under hdfs:///path/to/warehouse.

spark-sql ... \
    --conf spark.sql.catalog.paimon=org.apache.paimon.spark.SparkCatalog \
    --conf spark.sql.catalog.paimon.warehouse=hdfs:///path/to/warehouse

You can define any default table options with the prefix spark.sql.catalog.paimon.table-default. for tables created in the catalog.

After spark-sql is started, you can switch to the default database of the paimon catalog with the following SQL.

USE paimon.default;

Creating Hive Catalog #

By using Paimon Hive catalog, changes to the catalog will directly affect the corresponding Hive metastore. Tables created in such catalog can also be accessed directly from Hive.

To use Hive catalog, Database name, Table name and Field names should be lower case.

Your Spark installation should be able to detect, or already contains Hive dependencies. See here for more information.

The following shell command registers a Paimon Hive catalog named paimon. Metadata and table files are stored under hdfs:///path/to/warehouse. In addition, metadata is also stored in Hive metastore.

spark-sql ... \
    --conf spark.sql.catalog.paimon=org.apache.paimon.spark.SparkCatalog \
    --conf spark.sql.catalog.paimon.warehouse=hdfs:///path/to/warehouse \
    --conf spark.sql.catalog.paimon.metastore=hive \
    --conf spark.sql.catalog.paimon.uri=thrift://<hive-metastore-host-name>:<port>

You can define any default table options with the prefix spark.sql.catalog.paimon.table-default. for tables created in the catalog.

After spark-sql is started, you can switch to the default database of the paimon catalog with the following SQL.

USE paimon.default;

Also, you can create SparkGenericCatalog.

Synchronizing Partitions into Hive Metastore

By default, Paimon does not synchronize newly created partitions into Hive metastore. Users will see an unpartitioned table in Hive. Partition push-down will be carried out by filter push-down instead.

If you want to see a partitioned table in Hive and also synchronize newly created partitions into Hive metastore, please set the table property metastore.partitioned-table to true. Also see CoreOptions.

Creating JDBC Catalog #

By using the Paimon JDBC catalog, changes to the catalog will be directly stored in relational databases such as SQLite, MySQL, postgres, etc.

Currently, lock configuration is only supported for MySQL and SQLite. If you are using a different type of database for catalog storage, please do not configure lock.enabled.

Paimon JDBC Catalog in Spark needs to correctly add the corresponding jar package for connecting to the database. You should first download JDBC connector bundled jar and add it to classpath. such as MySQL, postgres

database type Bundle Name SQL Client JAR
mysql mysql-connector-java Download
postgres postgresql Download
spark-sql ... \
    --conf spark.sql.catalog.paimon=org.apache.paimon.spark.SparkCatalog \
    --conf spark.sql.catalog.paimon.warehouse=hdfs:///path/to/warehouse \
    --conf spark.sql.catalog.paimon.metastore=jdbc \
    --conf spark.sql.catalog.paimon.uri=jdbc:mysql://<host>:<port>/<databaseName> \
    --conf spark.sql.catalog.paimon.jdbc.user=... \
    --conf spark.sql.catalog.paimon.jdbc.password=...
    
USE paimon.default;

Table #

Create Table #

After use Paimon catalog, you can create and drop tables. Tables created in Paimon Catalogs are managed by the catalog. When the table is dropped from catalog, its table files will also be deleted.

The following SQL assumes that you have registered and are using a Paimon catalog. It creates a managed table named my_table with five columns in the catalog’s default database, where dt, hh and user_id are the primary keys.

CREATE TABLE my_table (
    user_id BIGINT,
    item_id BIGINT,
    behavior STRING,
    dt STRING,
    hh STRING
) TBLPROPERTIES (
    'primary-key' = 'dt,hh,user_id'
);

You can create partitioned table:

CREATE TABLE my_table (
    user_id BIGINT,
    item_id BIGINT,
    behavior STRING,
    dt STRING,
    hh STRING
) PARTITIONED BY (dt, hh) TBLPROPERTIES (
    'primary-key' = 'dt,hh,user_id'
);

Create External Table #

When the catalog’s metastore type is hive, if the location is specified when creating a table, that table will be considered an external table; otherwise, it will be a managed table.

When you drop an external table, only the metadata in Hive will be removed, and the actual data files will not be deleted; whereas dropping a managed table will also delete the data.

CREATE TABLE my_table (
    user_id BIGINT,
    item_id BIGINT,
    behavior STRING,
    dt STRING,
    hh STRING
) PARTITIONED BY (dt, hh) TBLPROPERTIES (
    'primary-key' = 'dt,hh,user_id'
) LOCATION '/path/to/table';

Furthermore, if there is already data stored in the specified location, you can create the table without explicitly specifying the fields, partitions and props or other information. In this case, the new table will inherit them all from the existing table’s metadata.

However, if you manually specify them, you need to ensure that they are consistent with those of the existing table (props can be a subset). Therefore, it is strongly recommended not to specify them.

CREATE TABLE my_table LOCATION '/path/to/table';

Create Table As Select #

Table can be created and populated by the results of a query, for example, we have a sql like this: CREATE TABLE table_b AS SELECT id, name FORM table_a, The resulting table table_b will be equivalent to create the table and insert the data with the following statement: CREATE TABLE table_b (id INT, name STRING); INSERT INTO table_b SELECT id, name FROM table_a;

We can specify the primary key or partition when use CREATE TABLE AS SELECT, for syntax, please refer to the following sql.

CREATE TABLE my_table (
     user_id BIGINT,
     item_id BIGINT
);
CREATE TABLE my_table_as AS SELECT * FROM my_table;

/* partitioned table*/
CREATE TABLE my_table_partition (
      user_id BIGINT,
      item_id BIGINT,
      behavior STRING,
      dt STRING,
      hh STRING
) PARTITIONED BY (dt, hh);
CREATE TABLE my_table_partition_as PARTITIONED BY (dt) AS SELECT * FROM my_table_partition;

/* change TBLPROPERTIES */
CREATE TABLE my_table_options (
       user_id BIGINT,
       item_id BIGINT
) TBLPROPERTIES ('file.format' = 'orc');
CREATE TABLE my_table_options_as TBLPROPERTIES ('file.format' = 'parquet') AS SELECT * FROM my_table_options;


/* primary key */
CREATE TABLE my_table_pk (
     user_id BIGINT,
     item_id BIGINT,
     behavior STRING,
     dt STRING,
     hh STRING
) TBLPROPERTIES (
    'primary-key' = 'dt,hh,user_id'
);
CREATE TABLE my_table_pk_as TBLPROPERTIES ('primary-key' = 'dt') AS SELECT * FROM my_table_pk;

/* primary key + partition */
CREATE TABLE my_table_all (
    user_id BIGINT,
    item_id BIGINT,
    behavior STRING,
    dt STRING,
    hh STRING
) PARTITIONED BY (dt, hh) TBLPROPERTIES (
    'primary-key' = 'dt,hh,user_id'
);
CREATE TABLE my_table_all_as PARTITIONED BY (dt) TBLPROPERTIES ('primary-key' = 'dt,hh') AS SELECT * FROM my_table_all;

View #

Views are based on the result-set of an SQL query, when using org.apache.paimon.spark.SparkCatalog, views are managed by paimon itself. And in this case, views are supported when the metastore type is hive, and temporary views are not supported yet.

Create Or Replace View #

CREATE VIEW constructs a virtual table that has no physical data.

-- create a view.
CREATE VIEW v1 AS SELECT * FROM t1;

-- create a view, if a view of same name already exists, it will be replaced.
CREATE OR REPLACE VIEW v1 AS SELECT * FROM t1;

Drop View #

DROP VIEW removes the metadata associated with a specified view from the catalog.

-- drop a view
DROP VIEW v1;

Tag #

Create Or Replace Tag #

Create or replace a tag syntax with the following options.

  • Create a tag with or without the snapshot id and time retention.
  • Create an existed tag is not failed if using IF NOT EXISTS syntax.
  • Update a tag using REPLACE TAG or CREATE OR REPLACE TAG syntax.
-- create a tag based on the latest snapshot and no retention.
ALTER TABLE T CREATE TAG `TAG-1`;

-- create a tag based on the latest snapshot and no retention if it doesn't exist.
ALTER TABLE T CREATE TAG IF NOT EXISTS `TAG-1`;

-- create a tag based on the latest snapshot and retain it for 7 day.
ALTER TABLE T CREATE TAG `TAG-2` RETAIN 7 DAYS;

-- create a tag based on snapshot-1 and no retention.
ALTER TABLE T CREATE TAG `TAG-3` AS OF VERSION 1;

-- create a tag based on snapshot-2 and retain it for 12 hour.
ALTER TABLE T CREATE TAG `TAG-4` AS OF VERSION 2 RETAIN 12 HOURS;

-- replace a existed tag with new snapshot id and new retention
ALTER TABLE T REPLACE TAG `TAG-4` AS OF VERSION 2 RETAIN 24 HOURS;

-- create or replace a tag, create tag if it not exist, replace tag if it exists.
ALTER TABLE T CREATE OR REPLACE TAG `TAG-5` AS OF VERSION 2 RETAIN 24 HOURS;

Delete Tag #

Delete a tag or multiple tags of a table.

-- delete a tag.
ALTER TABLE T DELETE TAG `TAG-1`;

-- delete a tag if it exists.
ALTER TABLE T DELETE TAG IF EXISTS `TAG-1`

-- delete multiple tags, delimiter is ','.
ALTER TABLE T DELETE TAG `TAG-1,TAG-2`;

Rename Tag #

Rename an existing tag with a new tag name.

ALTER TABLE T RENAME TAG `TAG-1` TO `TAG-2`;

Show Tags #

List all tags of a table.

SHOW TAGS T;
Edit This Page
Copyright © 2024 The Apache Software Foundation. Apache Paimon, Paimon, and its feather logo are trademarks of The Apache Software Foundation.